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Abstract 
 

The translation of personal genomics to precision medicine is predicated on the accurate 

interpretation of the multitude of genetic variants observed for each individual. However, even 

when genetic variants are predicted to modify a protein, their functional implications may be 

unclear. Many diseases are caused by genetic variants affecting important protein features, 

such as enzyme active sites or interaction interfaces. The scientific community has catalogued 

millions of genetic variants in genomic databases and thousands of protein structures in the 

Protein Data Bank. Mapping mutations onto 3D structures enables atomic-level analyses of 

protein positions that may be important for the stability or formation of interactions; these may 

explain the effect of mutations and in some cases even open a path for targeted drug 

development. To accelerate progress in the integration of these data types, we held a two-day 

Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet 

needs. The overarching goal of the workshop was to address the question: what can be done 

together as a community to advance the integration of genetic variants and 3D protein 

structures that could not be done by a single investigator or lab? Here we describe the 

workshop outcomes, review the state of the field, and propose the development of a framework 

with which to promote progress in this arena. The framework will include a set of standard 

formats, common ontologies, a common application programming interface (API) to enable 

interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools 

to specific analysis problems. Interoperability will enable integration of diverse data sources and 

tools and collaborative development of variant effect prediction methods. 

 

Keywords: genetic variants, protein structure, precision medicine, data integration 

 

Background 
Recent progress in DNA sequencing technologies has ushered in an era of rapid and cost-

effective genome sequencing, enabling clinical applications [1] and the potential for 

personalized, systems medicine [2] through the understanding of the individual’s genetic risks 

and by integration with longitudinal phenotype measurements [3]. The detailed knowledge of an 

individual’s genotype poses a significant interpretation challenge: while genetic variants 

disrupting transcript structure and protein-coding sequences (e.g., nonsense mutations) have 

long been considered ‘low hanging fruit’ relative to variants in non-coding sequences, the field 
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still struggles with interpreting missense mutations, which are more common, and more 

frequently associated with disease [4]. This has led to an increasing number of variants of 

uncertain significance (VUS). To address the resulting annotation and reporting challenges 

[5,6], the American College for Genetics and Genomics (ACMG) and the Association for 

Molecular Pathology (AMP) have released variant interpretation guidelines based on 

pathogenicity [7]. The interpretation of variants relies on a combination of multiple lines of 

evidence, including the frequency of the variant in the population (common variants are less 

likely to be pathogenic), the mode of segregation in pedigrees (e.g., de novo mutations not 

observed in parents are more likely to be pathogenic than those inherited), the mode of 

presentation in affected individuals (e.g., single dominant variant, single variant in homozygous 

state, two variants in compound heterozygous state), the predicted effect on RNA and protein 

sequence and structure, and prior knowledge accumulated in curated databases. Many 

computational tools have been developed to support these assessments (see Table S1 in 

Additional File 1). Multiple challenges remain in the quickly evolving field of clinical variant 

interpretation, including differences in allele frequency among different populations, a growing 

but still incomplete understanding of how variants affect regulation, sequence and structure of 

RNA and protein products, and the partial, inconsistently presented and sometimes conflicting 

knowledge in databases. 

 

To assess the potential pathogenicity of genetic variants, singly or in combinations, it is useful to 

assess their frequency in control or general populations. Public databases are burgeoning with 

information about genetic variants in humans and in many model organisms. Resources, such 

as dbSNP [8], dbVar [9], COSMIC [10], cBioPortal [11], UniProt [12], Kaviar [13], Clinvar [14], 

HGMD [15], ExAC and gnomAD [16] provide data on hundreds of millions of single nucleotide 

variants (SNVs) and other types of genetic variations. Each database has a different focus, 

different sources of data, processing methods, level of coverage, and degree of metadata 

associated with each variation; some focus only on human variation, while others cover many 

species. Similarly, each database has differing mechanisms for data access and differing levels 

of cross-referencing. 

 

The biomedical research community is fortunate to have access to such a wealth of information, 

but is simultaneously daunted by its sheer size and disparate nature. In addition to public 

databases hundreds of DNA and RNA sequencing experiments are revealing manifold genetic 

variants and mutations each year, and an increasing number of these can be linked to protein 

structure. For example, protein structure analysis of a novel variant in the ubiquitin-protein 

ligase TRIM11, observed in individuals affected with inflammatory bowel disease, helped 

determine that the variant is more likely to affect protein-protein interactions rather than protein 

folding and stability [17]. Functionally important somatic variants in cancer may form statistically 

significant spatial clusters in three-dimensional protein structure, which are not detectable in 

one-dimensional sequence, such as kidney cancer-specific variants in the tumor suppressor 

gene VHL, which are proximal to the binding site of VHL for its ubiquitination target HIF1A [18].  

 

Simultaneously, there has been great progress in characterizing the three-dimensional 

structures of proteins [19,20], both experimentally and computationally. Essentially all publicly 
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available experimentally derived structures are deposited into the Protein Data Bank (PDB) [21]. 

When experimentally determined structures are not available for proteins, structural models may 

be used instead. Protein Model Portal [22] aggregates precomputed models from multiple 

resources, whereas most methods generate models interactively on request, e.g. I-TASSER 

[23], ModWeb [24], Phyre2 [25], HHpred [26] or SWISS-MODEL [27]. Currently available 

homology models with 40 - 50% sequence identity to experimental structures already cover 

approximately 40% of the residues in the human proteome [28], although this does not always 

include the full-length protein in the correct quaternary structure, but often only specific 

domains. Beyond simply having three-dimensional models of proteins, it is crucial to annotate 

the functional substructures in these models with such information as the locations of binding 

and active sites, functional domains, regions that are externally accessible versus in the 

protected interior, interaction interfaces and other structural features that might be related to 

function [29]. 

 

However, the connections between genetic variations and protein structure are not always easy 

to find. A few computational tools have begun to emerge (cBioPortal [11], COSMIC-3D [30], 

CRAVAT [31], Jalview [32], MuPIT [33], MutDB [34], STRUM [35], Cancer3D [36]) that enable 

users to take individual genetic variations, or a list of them, and visualize these in the context of 

protein structures. For example, CRAVAT [31] allows a user to upload a Variant Call Format 

(VCF) file [37] (a file format used for representing DNA sequence variations) containing many 

genetic variants and assess which of those variants map to proteins, and then to explore 

individual variants in a 3D visualization of each protein when available. STRUM [35] allows 

users to visualize the structural model of a protein while in addition providing the profiles of the 

folding free-energy changes induced by the single-nucleotide polymorphisms (SNPs) or 

mutations. The starting point of STRUM is the wild-type sequence with SNPs or mutations, 

whereas I-TASSER is used to generate 3D protein models from which the impact of genetic 

mutations on protein stability can be more accurately calculated compared to the sequence-

based approaches. Other tools like Jalview [32] provide a workbench for exploring variants in 

context with multiple sequence alignments, molecular structures and annotations. COSMIC-3D 

and cBioPortal [11] map and visualize variants in their databases on 3D protein structures. The 

VIPUR pipeline [38] goes one step further and allows automatic interpretation of the effect of the 

mutation on the protein structure. The input to VIPUR is the wild-type sequence and the 

mutation of interest, and based on availability of a known structure or homology model, the tool 

maps the mutation onto the structure, and uses Rosetta [39] energy terms (see Glossary) as 

indicators to report which features are most strongly affected by the mutation. Broad mining of 

data across thousands of proteins and millions of variants remains challenging due to the 

computational cost of structure modeling and the limited availability of experimental structures 

and high-fidelity models. 

 

The confluence of genetic variation information and protein structure knowledge has broad 

applications to many fields of study, including precision medicine [40]. One can envision a future 

where an individual’s genetic variants are uploaded to an intelligent system that can flag 

variants for previously documented functional alterations, and then enable a clinician or genetic 

counselor to explore potential implications for health and disease of the individual’s variants 

https://en.wikipedia.org/wiki/Gene_sequence
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based on their predicted effects on the functions of individual proteins. Similarly, the decision of 

which therapies are indicated may be influenced or directly based on the known function of a 

drug as it relates to potential variants on the drug’s target protein. Such a system remains 

distant, but the time is right for developing an infrastructure that would enable its development. 

There are a few ongoing efforts curating functional data and disease association for cancer 

variants [41–44]. Efforts to computationally model the association of various genomic mutations 

and human diseases are also underway [45–47].  

 

Although the handful of tools listed above already perform an integration of genetic variation and 

protein structure at some level, building infrastructure for both large-scale integration as well as 

broader usage of tools in the lab and in the clinic has yet to be achieved. Large-scale data 

integration for millions of variants, thousands of genomes, and tens of thousands of structures 

on platforms such as Apache Spark [48] and Google BigQuery [49,50] will enable complex 

queries and machine learning approaches to further learn how to predict functional implications 

of detected variants. 

 

In order to accelerate progress in this field we held a workshop on this topic at the Institute for 

Systems Biology in Seattle in February 2017. In this article, we summarize the discussions and 

conclusions of this workshop, and present a comprehensive overview of the field. Finally, we 

conclude with a proposed architecture for a framework that could allow improved interoperability 

between the tools in this domain, making it easier for everyone to build on the accomplishments 

achieved thus far. 

 

The Gene Variation 3D workshop 
On February 9th and 10th, 2017, we hosted the Gene Variation to 3D (GVto3D) workshop at the 

Institute for Systems Biology in Seattle, WA. The goal of the workshop was to explore the state 

of the field connecting genetic variation and 3D protein structure, and to bring together some of 

the key researchers working on interpreting genetic variation data. The workshop consisted of a 

mixture of talks, discussion sessions, and breakout groups. The program is available at the 

workshop website [51]. Twenty-five speakers provided short (15 minute) summaries of their 

research; highlights from the talks are available on the meeting website. The oral presentations 

connected the workshop theme to diverse topics such as RNA sequencing, Big Data 

technologies, how precision medicine can help with specific diseases, and cancer research. 

 

After all the presentations and discussion sessions concluded, workshop participants separated 

into two breakout groups to brainstorm about how the research community as a whole could 

accelerate progress in the field in ways that individual labs could not. 

Breakout group 1 discussed existing ontologies, tools and datasets in the field and considered 

potential architectures for an integrative framework, focusing on how tools and resources could 

be made more interoperable to enable more widespread use of the tools and integration of 

inputs and outputs among the tools. Important aspects that emerged in the discussion include: 

1. Adoption or development of standardized formats for the various major data types (such 

as variants, splice isoforms, post-translational modifications, structures, sequence 

annotations, and phenotypes). 
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2. Mechanisms to scale up the information exchange to large-scale queries using big data 

technologies such as DataFrames [52] and BigQuery [49]. 

3. Use of ontologies to standardize the terminology for the exchange of data and 

knowledge. These ontologies already mostly exist, and need only be specified as the 

standard, although some extension may be required. 

4. Selection of initial tools that should be part of a pilot phase of the development and initial 

deployment of the interoperability framework. 

5. Development of a tool registry and portal that would serve as a web-accessible resource 

for finding relevant tools, their inputs and outputs, and also reference data files that can 

be used to demonstrate and validate the tools and their interoperation.  

Breakout group 2 discussed unmet needs, ranging from improvements in structural 

interpretation of splicing variants to more effective dissemination of knowledge to clinical 

geneticists, tumor panels and the general public. Salient questions and points that were 

discussed included: 

1. How can we increase the actionability of variants observed in patients? Beyond 

facilitating access to knowledge on structural impacts of variants, there is need for a 

metric of confidence in the predicted impact. Gene editing technologies are likely to 

enhance experimental studies of salient variants.  

2. There is also a need to recognize multi-variant interactions within single genes and 

proteins and mutation effects on protein-protein, protein-nucleic acid, or protein-ligand 

and drug interactions. Also, annotation of context in which each variant could have an 

effect is of importance. For instance, information on cell types or cellular conditions in 

which specific interactions or protein complexes are formed, as well as annotation of 

epistatic relationships with mutations elsewhere in the genome can help in interpreting a 

mutation’s influence on the cell. 

3. How can we improve the interpretation of variants affecting splicing? A proposal was 

made to create a mechanism for collecting donated RNAseq data to derive a 

comprehensive set of splice variants and interpreting them in the context of protein 

structure. It may also be useful to organize data on splice variants by type of alternative 

splicing (for example, exon swaps, intron retention, and coordinated inclusion of distant 

alternative exons [53], which are widespread in the human transcriptome and primarily 

affect protein coding exons (UNDER REVIEW)). 

4. How can we standardize annotation pipelines and data integration methods? It was 

recognized that this has already been partially solved independently by various teams, 

such as mapping genomic positions onto 3D structures (see “Current State of the Field” 

section), so there would be benefit from implementing an interoperation framework. 

5. Who are the target audiences? Scientists, tumor boards, clinical geneticists, developers 

of targeted drugs, patients, and lay people with interest in genetic testing. 

6. How can we improve documentation and outreach? Suggestions included development 

of documentation videos and tutorials, and contributing to Wikipedia sections describing 

the impact of variants on protein structure, building on current experience, like the 

Protein Standards Initiative [54] of the Human Proteome Organization. 

 



7 

The workshop has already begun to positively impact collaboration and interoperability in the 

wider research community. For example, an immediate outcome from discussions that occurred 

during the workshop was that links were added to the Kaviar database of human SNPs [13] and 

the PeptideAtlas database of proteins detected via mass spectrometry [55,56] pointing 

researchers to the MuPIT resource [33], so that the variations in the former resources can be 

depicted using the tools in the latter resource. Engaging members of the research community as 

we have suggests promising avenues for further work in this direction, including the design of a 

framework according to principles of user-centered design. Before laying out our vision for the 

framework, however, we first provide an overview of the current state of the field. 

 

The Current State of the Field 
Here we review methods that use 3D structural information from the Protein Data Bank to 

predict the effect of missense mutations; mapping other types of mutations (e.g., insertions, 

deletions, splicing effects) remains an open challenge. In Table 1 we present an overview of six 

classes of prediction methods, summarizing the type of prediction and listing some of their 

limitations. We have then reviewed the literature and assigned methods to these classes. Table 

S1 (see Additional File 1) presents an extensive summary of over 30 such methods that have 

been published in the last decade, and have a current web presence as a web-based user 

interface, a web service, or a downloadable stand-alone application. In addition, we have 

captured tools that rely on sequence information only. Prediction tools are trained, tested, and 

validated on sets of reference proteins and their mutated forms (benchmark datasets). In Table 

S1 we have included a list benchmark datasets commonly used to train prediction tools. 

 

A first set of methods predicts thermodynamic properties related to mutations: 1) change in 

protein stability [35,57–71]; and 2) change in binding affinity for protein-protein [65,72–77], 

protein-nucleic acid [65], and protein-ligand complexes [78]. These methods have been trained 

on data of wildtype and mutant protein pairs, often using protein stability data from the 

ProTherm database [79], protein-protein binding affinities from SKEMPI [80], protein-nucleic 

acid binding affinities from ProNIT [79], and protein-ligand binding affinities from Platinum [81]. 

 

A second set of methods [38,57,75,82–87] predicts the phenotypic effect (pathogenicity) of 

mutations, most often as a binary classification: deleterious or neutral effect. These methods 

have been trained on data resources that either contain mostly germline mutations, ClinVar [14], 

HGMD [15], and OMIM [88], or somatic mutations such the Cancer Genome Atlas (TCGA) [89], 

and COSMIC [10]. Carefully selected benchmark datasets to develop and test prediction 

methods have been collected: VariBench [90] and VariSNP [91]. 

 

Few prediction methods are purely based on 3D structural information, with the exception of 

FoldX [62], which uses an empirical scoring function to predict the change in protein stability or 

protein-protein binding. Most methods (Table S1 in Additional file 1) use a combination of 

structural and sequence features and then formulate a regression problem to predict scalar 

values (e.g., affinity changes), or a classification problem to predict a mutation as probably 

deleterious or neutral. Some methods use homology models when experimentally determined 

structures are not available, to increase structural coverage. The use of structural information 
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varies from method to method. FoldX uses the 3D atomic coordinates of the protein, whereas 

most methods extract structural features that characterize changes in the local environment 

around a mutated residue [38]. 

 

Most tools to predict the effect of mutations are available online. However, there is a wide 

variety of input formats and scope of prediction (i.e., predicting the effect of a single or multiple 

amino acid mutations). The majority of the 3D protein structure-based tools take PDB residue 

numbers of the mutated sites as input (Additional File 1, Table S1). There are also tools that 

exploit structural models predicted by advanced structure modeling algorithms and demonstrate 

the usefulness of structure predictions compared to those using only sequences, such as FoldX 

[62] or BindProfX [77]. A smaller number of tools use UniProt/Swiss-Prot residue positions. A 

minority of tools use chromosome position, dbSNP ID [8], or VCF files as input. A few tools 

need explicit PDB structures in the wild-type and mutated forms. User interfaces and 

presentation of results with the available web resources vary significantly; some resources 

require a user registration, and in some instances results are returned by email. 

 

Several integrated tools have been developed that combine the prediction of the effects of 

mutations, annotation by functional information, and visual mapping of mutation sites onto 3D 

protein structures and multiple sequence alignments. Examples include 3DHotspots.org [92], 

cBioPortal [11], COSMIC-3D [10], CRAVAT [31], Jalview [32], LS-SNP/PDB [93], MOKCA [94], 

MuPIT [33], RCSB PDB [21], SNP2Structure [95], and Cancer3D [36]. These tools might help 

elucidate the effect of mutations in the context of both 3D structure and other available 

annotations. Ensembl’s Variant Effect Predictor (VEP) [96] combines several annotation and 

prediction services, including various considerations of effects on protein products. 

 

A biologist who wants to assess the effect of mutations is confronted with a bewildering set of 

tools and options. The high variability in the user interfaces and representation and retrieval of 

results makes a systematic comparison of predictions by multiple tools cumbersome and 

requires manual input; hence, most tools are not applicable to anything but a small set of 

selected mutations. A systematic or automated comparison of a list of mutations (e.g., at 

exome-scale) using multiple tools is generally not possible. For example, it would be useful to 

run tools that predict multiple effects of mutations simultaneously, such as protein stability and 

interruption of protein-protein and protein-nucleic acid binding. A further limitation is the input by 

PDB or UniProt residue position, since SNVs are annotated using genomic coordinates. 

Mapping between genomic and protein coordinate systems is error prone due, for example, to 

different genome assembly versions and alternative splicing. Where a mapping from genome to 

Uniprot is possible, SIFTS [97] and CRAVAT [31] provide consistent residue-level mapping to 

and from PDB structures and other resources. 

 

Current tools that predict the effect of missense mutations are either based on protein sequence 

information, 3D structural information, or both. Tools predict either biophysical changes or effect 

on phenotype. Tools that use 3D structural information and visualization offer additional insights 

by providing locations of mutations in a 3D context, which is not possible using sequence-based 

prediction. For example, multiple mutations on a protein can be visualized and potential 



9 

hotspots can be identified. In the next section we describe a framework to overcome the large 

heterogeneity of tools with limits their usefulness, ease of use, and hinders comparative 

performance assessments. 

 

Proposed framework for making progress as a community 
To facilitate innovation in this field, we recommend the development of a framework of common 

formats and application programming interfaces (APIs) that enable the many resources to 

interoperate more effectively both at the individual variant level and at large scales. We further 

recommend the development of a portal that can be used to annotate the current state of tools 

in the field and guide users on how these tools can interoperate and be used to address 

different research questions. The outline of the recommended GVto3D Framework takes its lead 

both from our wider review of the field as well as from the presentations and discussions that 

occurred amongst those members of the research community in attendance at the workshop; its 

design incorporates the needs and existing efforts of these researchers. 

 

Figure 1 depicts the recommended components and design of the GVto3D framework. The 

Tools Registry will act as a central repository of data resources and software tools related to 

genetic variants, protein sequences, protein structures, variant effect prediction and variant 

annotation. Metadata about each resource to enable findability of the different software tools will 

be stored and offered through an interactive web interface and also an application programming 

interface (API) which in turn enables the development of intelligent software that can 

automatically discover applicable resources and gather the information about how to 

communicate with them to obtain the desired results. In addition to name, description, citations, 

contact information, and uniform resource locators (URLs), each entry will contain information 

important to the tool’s interoperation, such as the inputs and outputs, API support, and 

reference genome information. 

 

A second component of the portal will be the definition of standard APIs so that information can 

be sent to and requested from different tools in the same way, thereby reducing software 

development overhead typically encumbered with different tools use different APIs. It is 

envisaged that new 3rd party tools will use the API natively while API adapters will be developed 

in order to bridge with pre-existing 3rd party tools. The API enables seamless interoperability 

between different variant related tools and also a standard access to a multi-directional mapping 

among genomic, protein sequence and protein structure coordinates. These mappings will be 

made available through APIs and as downloadable data files. Mappings will be kept up to date 

based on the update schedules of the underlying data sources (PDB - weekly, UniProt - 

monthly), freeing developers from maintaining and updating copies of these data. Once several 

similar resources support the standard APIs, the site can be further developed into an 

aggregation portal, where a query at the portal can be automatically farmed out to multiple 

resources, and the results collated and returned to the user in a single batch. This framework 

advances the FAIR principles of findability, accessibility, interoperability, and reusability [98] for 

all tools and resources that participate. 
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The use of standard file formats and standardized representations of data enable 

interoperability of prediction tools, e.g., the output from one tool can be passed as input into a 

second tool, and can thereby simplify the comparison of different methods. The standardized 

formats are also essential components of a reusable set of integrated tools (software stack), 

including tools for reading and interpreting data files (file parsers), APIs, and visualization tools. 

Most of the current tools use a variety of inputs and outputs, placing a large burden on the user 

to transform data. Standard file formats and uniform APIs will be at the core of future services 

that will combine and compare different approaches. Various platforms and tools have different 

schedules and reliability of upgrades; keeping track of versions is important as changes to 

software may have large effects on the results. 

 

The VCF file format [37], despite its complexity, is the de facto standard format for storing 

variant calls for single nucleotide variants to long insertions and deletions. The Global Alliance 

for Genomics and Health’s Data Working Group File Formats Team defines the VCF 

specification and its evolution [99]. Variant annotations, e.g., the results of prediction tools, can 

be captured in the INFO records, which are a set of structured records used to add annotation 

to VCF files. VCF versions 4.x, including the current version 4.3 [100] define meta-information 

lines that describe the INFO record data types and enforce standardization [101]. In addition to 

VCF, a few other formats have been described such as ANN, which defines a different standard 

for representing variant information in INFO fields; the Variant Effect Predictor [96] supports a 

simple tab-delimited, as well as JavaScript Object Notation (JSON) output format. 

 

The Human Genome Variation Society aims to foster discovery and characterization of genomic 

variations including population distribution and phenotypic associations. It has established 

guidelines and recommendations for the nomenclature of gene variations and serves as an 

international standard [102]. 

  

Progress in this field depends on global collaboration and the sharing and reuse of tools. APIs 

provide protocols to enable this collaboration. Tools wrapped in standard APIs present a 

consistent interface to heterogeneous tools, enhancing interoperability, and shield the user from 

changes to the underlying software. As an example, many prediction tools that use 3D protein 

structural information define the location of mutations at the protein level using either UniProt or 

PDB coordinates. Mapping genomic coordinates to 3D protein structure is non-trivial and error 

prone. Robust APIs that can perform this mapping with up to date 3D information using both 

types of protein coordinates can augment existing tools that are based on just linear protein 

sequence coordinates.  

 

Moreover, progress in the prediction of the effect of mutations and use of 3D structural 

information depends on the availability of well-designed training, test, and validation sets. The 

tool repository will be a place to share datasets, and protocols and references (metadata) for 

how these datasets were generated. Validation sets, accompanied by well documented tutorials 

or vignettes, will include a subset of variants with well understood effects that can be used to 

test the output of available resources. Eventually these can serve as a set of unit tests for the 

framework itself. 
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Conclusions and future perspectives 
Although there will continue to be exceptional innovation in this field, the disparate nature of 

current tools and resources and lack of interoperability contribute to slower progress of the field 

than might otherwise be possible. The Gene Variation to 3D workshop held in Seattle in 

February 2017 represents an important step towards spurring collaboration and advancing 

progress in proteogenomics research. Development of a community-driven interoperability 

framework for integrating genetic variation resources and protein structure resources promises 

further expansion of our understanding of the functional implications of genetic variation. While 

the use of 3D structural features has enabled the atomic level exploration of the effects of 

mutations, e.g., the identification of mutation hotspots, the accuracy, scope, and scale of 

predictions are still limited. The proposed framework will enable pooling of data sources and 

tools and collaborative development. 

 

However, there will be substantial challenges as we move forward with design of the framework. 

The first challenge is establishing a durable user base for the framework. One possible 

approach is to engage a few key labs to take the lead as early adopters, and assume that the 

framework will gain wider community acceptance through the work of these early adopters. We 

propose a more user-centered design approach, however, which emphasizes an iterative 

process of engaging multiple communities of practice in conceptualizing, developing, and rolling 

out the framework; the GVto3D workshop was a first step in this direction. Second, questions of 

sustainability are also pertinent here insofar as how such a system will be maintained, and who 

will be responsible for ongoing maintenance. Here, we propose an approach that we envision 

will become self-sustaining through deployment of open-source technologies in an engaged 

community. Third, standardization is a key component of any interoperability project, which in 

this case depends upon work to enhance usage of certain de facto standards, and to establish 

other standards, including the creation of standard APIs. Working closely with the community of 

potential framework users, as well as with standard-setting bodies such as Global Alliance for 

Genetics and Health and the Proteomics Standards Initiative of the Human Proteome 

Organization will be important for helping these standards gain further traction. 

 

Taken together, the user-centered framework we have outlined above – a Tool Registry and a 

set of standardized formats and common APIs based on deployment of open-source materials – 

aims at bringing the FAIR principles to bear on current and emerging tools while enabling 

broader usage across multiple communities of practice. The result promises to be more rapid 

progress in research that can make use of GVto3D resources and eventual applications to 

precision medicine, while ensuring that methods and outcomes are findable, accessible, 

interoperable, and reusable. 

 

List of abbreviations 
ACMG: American College of Genetics and Genomics 

AMP: Association for Molecular Pathology 

API: application programming interface 

FAIR: findable, accessible, interoperable, reusable 
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GVto3D: Gene Variation to 3D 

PDB: Protein Data Bank 

SNV: single-nucleotide variant 

SNP: single-nucleotide polymorphism 

URL: universal resource locator 

VCF: variant call format 

VUS: variant of uncertain significance 

 

Glossary 
Benchmark dataset: A curated and well-studied dataset that can be used to evaluate the relative 

performance of analysis methods and algorithms. 

File parser: A computer program module that interprets the structure of input data and breaks 

the input into well-defined parts that can then be used by other parts of the computer program. 

Rosetta energy terms: Rosetta [39] estimates the energetic stability of protein structures as a 

sum of energy terms, including hydrogen bonding, electrostatic interaction, attractive and 

repulsive interaction, and solvation terms. 

Software stack: A set of software subsystems or components designed to work together as a 

platform. 

Variant Call Format: A standard format of a text file used for storing genome sequence 

variations relative to a reference genome. 
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Figures 
 

 
 

Figure 1. Components of the GVto3D portal. The Tools Registry contains a searchable 

description and metadata for tools, resources, and reference data sets for third-party variant 

effect prediction and annotation services. Standardized APIs provide interoperability for data 

input and output of these 3rd party tools. Custom adapters can provide limited interoperability for 

tools that cannot adopt the API. A mapping service provides bi-directional mappings from 

reference genome coordinates to UniProt protein positions and to PDB residue positions. The 

tools can use the mapping service to accept variant positions in any of the three coordinate 

systems. A beacon system enables queries about variant positions where 3D structural 

information and annotation is available. 
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Tables 
 

Table 1: Classification of methods to predict the effect of missense mutations 

 

Method Type 
 

Prediction Limitations 

Protein stability Predicts the difference in 
unfolding free energy between 
wild-type and mutant protein 

Considers only one possible 
mechanism that may affect 
the phenotype 

Protein-protein/protein-nucleic 
acid affinity 

Predicts the difference in the 
binding affinity between 
binding partners upon 
mutation 

Small training datasets limit 
the scope of these methods 

Protein-ligand affinity Predicts the difference in 
ligand binding affinity upon 
mutation 

Small training datasets limit 
the scope of these methods 

Phenotypic effect Predicts the likelihood that a 
mutation is deleterious without 
considering a specific 
molecular mechanism 

Except for Mendelian disease 
phenotypes, the phenotype 
may only be observed in a 
subset of the population 
(partial penetrance). 
Databases use different 
annotation practices and 
contain contradictory 
information for some 
mutations. 

Mapping and 3D visualization Provides a 3D context of the 
site of mutation and may give 
atomic level insight into 
mechanism of action 

Visual approach is not 
suitable for automated whole-
exome predictions 

Mutation hotspots Clusters mutations by spatial 
proximity that are not 
necessarily close in protein 
sequence 

Clustering may not explain the 
effect of specific mutations in 
a hotspot 
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